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Abstract-This paper presents a study of the Fuzzy ARTMAP neural network in designing 
cascaded gratings and frequency selective surfaces (FSS) in general. Conventionally, trial 
and error procedures are used until an FSS matches the design criteria. One way of 
avoiding this laborious process is to use neural networks (NNs). A neural network can 
be trained to predict the dimensions of the elements comprising the FSS structure, their 
distance of separation, and their shape required to produce the desired frequency response. 
In the past, the multi-layer perception architecture trained with the back-prop learning 
algorithm (back-prop network) was used to solve this problem. Unfortunately, the back- 
prop network experiences, at times, convergence problems and these problems become 
amplified as the size of the training set increases. In this work, the Fuzzy ARTMAP neural 
network is used to address the FSS design problem. The Fuzzy ARTMAP neural network 
converges much faster than the back-prop network, and most importantly its convergence 
to a solution is guaranteed. Several results (frequency responses) from cascaded gratings 
corresponding to various angles of wave incidence, layer separation, width strips, and 
interstrip separation are presented and discussed. 

1. INTRODUCTION 

Frequency selective surfaces (FSS) have numerous applications as electromagnetic 
system devices, such as polarizers, filters, radomes, dichroic reflectors, infrared 
sensors and beam tuners for optical systems. Currently, there is no closed-form 

solution that can directly relate a desired frequency response to the correspond- 

ing FSS. Trial and error procedures are used until a frequency selective surface 
matches the design criteria. One way to avoid this process and obtain a synthe- 
sis procedure is to utilize the training capabilities of neural networks. A neural 
network can be trained to predict the dimensions of the metallic patches (or aper- 
tures), their distance of separation and their shape in order for an FSS to produce 
the desired frequency response. 

Previous work is limited to designing an FSS using the back-prop neural net- 
work ([1,2]). The back-prop neural network is a multi-layer feed-forward neural 
network trained with the back-prop learning algorithm ([3]). During the training 
of this network the geometric information pertaining to an FSS (e.g., the dimen- 

sions, shapes, etc.) is fed as input to the neural network. The corresponding 
frequency response for each dimension and shape is also provided to the neural 
network as its desired output. Each pair (input, desired output) constitutes a 
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training pair and it is utilized to train the neural network architecture. Once the 
neural network is trained, a desired response is provided at the neural network 

output, and through an algorithmic process, called inversion ([4]), the network 

produces at its inputs the appropriate dimensions and element shapes of an FSS 
that can generate this desired response. 

In this paper, we propose an alternative method to tackle the aforementioned 
FSS problem. This method relies on another neural network architecture, named 

Fuzzy ARTMAP [5]. This neural network possesses several advantages compared 
with the back-prop neural network. First, the Fuzzy ARTMAP neural network is 
faster to train than the back-prop neural network. Second, once Fuzzy ARTMAP 
is trained with a list of training data, it does not require extensive retraining with 
the old data when new training data are added to the training list. On the other 

hand, extensive retraining of the back-prop network with the old training data 
is often required when new training data are added to the training list. Finally, 
Fuzzy ARTMAP is guaranteed to converge to a solution for any collection of 

training data provided to the network, whereas the back-prop network has often 

problems to converge to the right solution. 

2. THE FUZZY ARTMAP NEURAL NETWORK 

2.1 Preliminaries 

As most of the existing neural network models the Fuzzy ARTMAP neural net- 
work consists of a number of nodes (neurons) that are interconnected with each 
other via connections of varying strength, called weights. Fuzzy ARTMAP is capa- 
ble of learning arbitrary mappings from an input space of arbitrary dimensionality 
to an output space of arbitrary dimensionality. 

In particular, the Fuzzy ARTMAP neural network consists of two Fuzzy ART 

([6]) modules designated as ARTa and ARTb, as well as an inter-ART module as 
shown in Fig. 1. Inputs from an input space are presented at the ARTa module, 
while outputs from an output space are presented at the ARTb module. The 
inter-ART module includes a MAP-layer Fab, whose purpose is to determine 
whether the mapping between the inputs and the outputs is the desired one. 

The ARTa module consists of two layers of nodes designated by Fi and F2 . 
Weights, called 6ottom-up weights, connect the nodes of layer Fla and the nodes of 

layer F2. Similarly, weights, called top-down weights, connect the nodes of layer 

F2 and the nodes of layer Fï. The ARTb module consists of two layers of nodes 

designated by F6 and Ff . Weights, called bottom-up weights, connect the nodes 

of layer F6 and the nodes of layer F2 . Similarly, weights, called top-down weights, 
connect the nodes of layer F2 and the nodes of layer F6 . The Inter-ART module 
consists of a layer of nodes, called the MAP-layer Fab . There are connections 

emanating from the nodes of layer F2 and converging to the nodes of the MAP- 

layer Fab , as well as weights between the nodes of the MAP-layer Fab and the 

nodes of layer Ff . 
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Figure 1. Fuzzy ARTMAP architecture. 

Before an input is presented to the ARTa module it is normalized so that each 

one of its components has values lying in the interval [0, 1]. Furthermore, addi- 

tional preprocessing of the normalized inputs, occurring at layer F8' of ARTa, is 

required; this type of preprocessing, called complement coding, takes a normalized 

input vector i, and it produces a vector I, such that 

where il = 1- i, and 1 stands for a vector with all of its components equal to 1. 

Similar type of normalization and preprocessing stages are required at the ARTb 
module. That is if o designates a normalized output, the complement coded 

output 0 presented at the Fb layer of ART6 is equal to 

where o' = 1 - o, and 1, as before, is a vector with all of its components equal 
to 1. 

As it is the case with other neural network models we distinguish two phases 
with the Fuzzy ARTMAP neural network. The training phase and the performance 

phase. In the training phase we have a collection of input output pairs designated 
as (I1, O1), (I2, 02),... (IP, OP) that we refer to as the training list. We want to 

train the Fuzzy ARTMAP neural network to learn the following mapping: 11 to 

0 , 12 to OZ , and eventually I to 0 . To do so, we present the training 
list repeatedly to the Fuzzy ARTMAP architecture. That is we present 11 to 

ARTa and 01 to ARTb, then 12 to ARTa and 02 to ARTb, and eventually 
IP to ARTa and OP to ARTb ; this corresponds to one list presentation. We 
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present the training list to Fuzzy ARTMAP as many times as it is necessary for 
the architecture to learn the desired map. The order of presentation of the input 
pairs within the list is not essential, as long as all the pairs in the list are presented 
within every list presentation. It is important, for the aforementioned training 
scenario, to determine when the learning process is completed. We say that the 

learning process is complete if the adaptable weights in the Fuzzy ARTMAP neural 
network do no not change in one training list presentation. This is an indication 
that all the desired mappings between inputs and corresponding outputs from 
the training list have been established by the neural network architecture. The 

adaptable weights in the Fuzzy ARTMAP neural are the bottom-up and top- 
down weights in ARTa and ARTb, and the connections from the F2 layer to 
the MAP-layer Fa6. 

During the training phase of the Fuzzy ARTMAP neural network an input vec- 
tor (e.g., input IP ) from the training list is presented at the ARTa module, while 
the corresponding output vector (e.g., 0P ) from the training list is presented at 
the ARTb module. A compressed representation of the input vector IP is estab- 
lished at the F2 layer of the ARTa module, and a compressed representation 
of the output vector OP is established at the FZ layer of the ARTb module. 
The purpose of the inter-ART module is to determine whether the compressed 
representation of the input IP at F2' is mapped to the compressed representation 
of the output OP at the F2 . If the correct mapping is established the adapt- 
able network weights are modified to incorporate this mapping as part of their 

knowledge. If the correct mapping is not established then the network looks for 
another compressed representation of the input IP at F2' which establishes the 

correct mapping with the compressed representation of output OP at F2 then 
modification of the adaptable network weights ensues. 

The performance of the network is investigated once the training phase is com- 

pleted. During the performance phase of the Fuzzy ARTMAP neural network a 
test input is provided at the ARTa module and the corresponding output that 
this test input is mapped to, at the ARTb module, is observed. By presenting to 
the network architecture a collection of test inputs with known desired outputs 
we can evaluate the performance of the network on network inputs that it has 
never seen before. 

2.2 FSS Design Using the Fuzzy ARTMAP Neural Network 

The Fuzzy ARTMAP neural network is applied to the specific problem of cas- 
caded gratings, with different strip widths, interstrip distance of separation, layer 
separation, dielectric slab thickness, and angles of wave incidence. 

The training inputs for the network correspond to the geometrical information 
of the cascaded gratings shown in Fig. 2. In particular, 66 sets corresponding to 
cascaded gratings and 48 sets corresponding to cascaded gratings with dielectric 
slabs were used as our training inputs. Furthermore, the corresponding frequency 
responses were used as the training outputs. As a training output to the neural 
network the magnitude of the transmission coefficient, as a function of cell distance 
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a, is used. This transmission coefficient curve is referred to in this paper as the 

frequency. response. The data for the transmission coefficient as a function of the 
dielectric slab thickness, number of cascaded layers, wave incidence, and other 

geometrical parameters were produced by using the Spectral Domain FFT method 

([7]) and the cascaded network theory ([8]). Actually, data for the transmission 
coefficient can be calculated using any other available method. 

As we emphasized in the previous subsection the inputs and outputs of the 

training list are normalized prior to their presentation at the ARTa and ARTb 
modules, respectively. Also, complement coding of the inputs and the outputs 
is implemented at the preprocessing layers F8' and F, of the Fuzzy ARTMAP 
neural network, respectively. 

In our application the F8' layer of Fuzzy ARTMAP has 3 nodes, correspond- 
ing to the normalized input components 0, b and d; 8 designates the angle of 

incidence, b denotes the strip width, and d corresponds to the distance of separa- 
tion of cascaded gratings in the FSS. The Fï layer has six nodes to accommodate 
the normalized input vector (0, b, d) and its complement vector b', tf). The 

F? layer of Fuzzy ARTMAP has 17 inputs corresponding to 17 distinct values 
of the desired frequency response, obtained by sampling the desired frequency 
response at 17 distinct equally distributed points over its domain of definition. 

Consequently, the Fb layer has 34 nodes to accommodate the aforementioned 

17-D vector and its complement. The number of nodes in F2' and F2b are chosen 
to be large enough to produce the compressed representations of the inputs and 

outputs presented at layers Fï and Fb , respectively. 
The performance phase of the Fuzzy ARTMAP in the FSS problem differs from 

the standard performance phase of this network, described in the previous subsec- 
tion. This is due to the fact that in the performance phase we are provided with 
test outputs (desired frequency responses) instead of test inputs (FSS parameter 
values). During this phase we apply the test output at the ARTb module of 

Fuzzy ARTMAP. A compressed representation of this output will be chosen in 
the F2 layer of ARTb, which in turn, through the inter-ART weight connections, 
will point us to a node in the F2 layer of ARTa. This node in F2 represents 
a compressed representation of FSS parameter values, and the top-down weights 
emanating from this node will provide for us the FSS parameter values that can 

hopefully generate the frequency response applied at the ARTb module. The 
test outputs used in the performance phase of the Fuzzy ARTMAP were 6 de- 
sired frequency responses pertaining to FSS cascaded gratings parameter values. 
The performance of the Fuzzy ARTMAP neural network is evaluated by (i) uti- 

lizing the FSS parameter values that the network provides to us, (ii) producing 
the frequency response (using the equations in [7] and [8]) that these parameters 
generate, and (iii) comparing the frequency response in step (ii) with the desired 

frequency response. 
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Figure 2. a) Geometry of two cascading gratings b) Cascading of N 

gratings or dielectric slabs. 
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Since with the Fuzzy ARTMAP neural network applied to the FSS problem a 

many-to-one mapping is implemented, the situation where many collections of FSS 

parameter values are mapped to identical or almost identical frequency responses 
is possible. Hence, in the performance phase of Fuzzy ARTMAP, as we present 
a desired frequency response at the ARTb module it is possible that the Fuzzy 
ARTMAP architecture, through the F2' - Fab and Fab z Fb weights, points 
us to more than one collection of FSS parameter values that are mapped to this 

desired frequency response. 
A more detailed description of the training and performance phase of Fuzzy 

ARTMAP neural network, applied to the FSS problem, is included in Appendix A. 

3. SIMULATION RESULTS 

In this section, we present simulation results that demonstrate the performance of 

the Fuzzy ARTMAP neural network applied to the particular FSS design problem 
mentioned earlier. 

For comparison purposes we attempted to solve the FSS design problem using 
the back-prop network with inversion, since this was a technique applied before 

in the literature. The back-prop network that we utilized consisted of one hidden 

layer of nodes. Despite our efforts we were unable to make this approach work sat- 

isfactorily. The back-prop network failed because in the training phase it did not 

satisfy the strict convergence criteria. When we loosened the convergence criteria 

in the training phase it converged to a solution, but during the performance phase 

(where the inversion algorithm was utilized) it did not perform satisfactorily (i.e., 
it did not converge to solutions for the input FSS parameters that produced as 

outputs the desired frequency responses). However, in order to obtain some back- 

prop results, pertaining to the FSS problem, we decided to simplify the problem 
and to train the back-prop on the inverse FSS problem. In particular, we trained 

the back-prop network with a smaller training list (i.e., the one consisting of the 

66 FSS parameters corresponding to cascaded gratings). Furthermore, in the 

training phase the training inputs were the desired frequency responses and the 

training outputs were the FSS parameter values (i.e., 0, b and d ) that generated 
these desired frequency responses. To be consistent with the training of Fuzzy 
ARTMAP the desired frequency responses were represented by 17 of their val- 

ues obtained by sampling the desired frequency responses at 17 distinct, equally 
distributed over the domain of definition of a desired frequency response, points. 

In the performance phase of the back-prop network, we presented as an input 
to the architecture one of the 6 test outputs used in the performance phase of 

Fuzzy ARTMAP. To evaluate the performance of the back-prop network: (i) we 

utilized the FSS parameter values that a desired frequency response produced at 

the network output, (ii) we used the FSS parameter values of step (i) to pro- 
duce via the equations of references [7] and [8] the corresponding frequency re- 

sponse, and (iii) we compared the frequency response derived in part (ii) with the 
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desired frequency response. As we have emphasized above the back-prop results 

reported in this paper correspond to a back-prop network trained on the inverse 

FSS problem. 
The back-prop network required 2-3 hours of training (40,000 - 60,000 training 

list presentations), while the Fuzzy ARTMAP neural network required only 10 

seconds of training (2 - 3 training list presentations). Both approaches were 

implemented on a Sun-4 machine. Figures 3-8 illustrate the performance of the 

back-prop network and the performance of the Fuzzy ARTMAP network when 

they are presented with a desired frequency response from the test list. The 

numbers in the parentheses of these figures represent the geometric parameters 
of the gratings, (i.e., 9, b, d, where 8 is in degrees and b and d are in terms 

of the interstrip distance a). A general observation that can be drawn from 

these figures is that both the back-prop and the Fuzzy ARTMAP networks yield 

satisfactory initial choices of the FSS parameter values that produce the desired 

frequency response; note that although the initial choices of the FSS parameter 
values obtained by these approaches are not close to the FSS parameter values that 

produced the desired frequency response these initial parameter choices generate 
a frequency response that is reasonably close to the desired frequency response. 

Figure 3. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters (0, b, and d). 
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Figure 4. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters ( 0 , b, and d). 

Figure 5. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters (0, b, and d). 
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Figure 6. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters (0, b, and d). 

Figure 7. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters (C, b, and d). 
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Figure 8. Transmission coefficient for two cascaded gratings. The desired 

response is compared with the obtained responses from the back- 

prop and ARTMAP neural nets for various geometric parame- 
ters ( 8 , b, and d). 

It should also be noted that whereas the back-prop network yields only one 
choice of FSS parameter values, the Fuzzy ARTMAP network yields, at times, 
more than one set of FSS parameter values. In particular, in Figures 3-6, only one 
set of FSS parameter values is obtained by the back-prop and Fuzzy ARTMAP 
networks and the corresponding desired responses produced are compared against 
the desired frequency response. On the other hand, in Figures 7 and 8 Fuzzy 
ARTMAP produces 2 and three different sets of FSS parameter values, respec- 
tively. It is advantageous to obtain more than one prediction of the FSS parameter 
values that generate a desired frequency response, because then you can identify 
appropriate ranges for the FSS parameter values; subsequently, you can isolate 

your search over these FSS parameter ranges in order to produce a corresponding 
frequency response that is the best match of the desired frequency response. 
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4. CONCLUSION 

The Fuzzy ARTMAP neural network was utilized to synthesize a given frequency 
response for cascaded gratings FSS and for cascaded gratings with dielectric slabs 
FSS. Furthermore, for comparison purposes the back-prop network was used to 

synthesize a desired frequency response only for cascaded gratings FSS. 
Both approaches demonstrated that after training of the neural network is 

complete they can provide reasonable predictions for the set of FSS parameter 
values that generate a desired frequency response. However, the Fuzzy ARTMAP 

approach has a number of attractive features compared with the back-prop ap- 
proach. First, the training of Fuzzy ARTMAP is guaranteed to converge to a 
solution. On the other hand, the back-prop approach cannot guarantee conver- 

gence to a solution. Second, training the Fuzzy ARTMAP neural network is much 
faster than training the back-prop neural network; usually Fuzzy ARTMAP con- 

verges to a solution after 3-4 presentations of the training list, while back-prop 
requires at times thousands of presentations of the training list. Third, retraining 
of the Fuzzy ARTMAP neural network is much less computationally intensive 
than retraining the back-prop network when new data are added to the training 
list. Fourth, the Fuzzy ARTMAP neural network can produce more than one set 
of FSS parameter values that can generate a desired frequency response. These 
sets of FSS parameter values can then be used by the designer to identify a range 
of FSS parameter values over which the search will be isolated to come up with 
the best possible FSS parameter set. On the other hand, the back-prop network 
will only produce one set of FSS parameter values for a given desired frequency 
response. One advantage of the back-prop network compared with the Fuzzy 
ARTMAP network is that it uses fewer network nodes to solve the FSS design 
problem. In particular, the back-prop network utilized in this paper used 5 or 6 
hidden layer nodes, while the Fuzzy ARTMAP neural network used between 42 
and 91 F2 nodes, and between 25 and 87 F2 nodes, depending on the value of 
the Fuzzy ARTMAP parameter pb ; smaller pb values produced fewer nodes in 

F2 and Ff . 
Based on the favorable characteristics that the Fuzzy ARTMAP neural network 

demonstrated in the aforementioned FSS synthesis design problem, we anticipate 
that this network will be capable of solving the FSS synthesis problem for fre- 

quency selective surfaces of more complicated geometries. 

APPENDIX A 

A.1 Terminology - Notation 

Layers F8', Fla , F2, Fdb , Ff , and F8 in the Fuzzy ARTMAP neural 
network have Ma, 2Ma, Na, Nb, Nb, 2Mb, and Mb nodes, respectively. We 
use the index j to designate nodes in the Fï layer, the index k to designate nodes 
in the F2 layer, the index l to designate nodes in the MAP-layer Fab and the 

F2b layer, and the index m to designate nodes in the F6 layer. For the detailed 

description of the training and performance phase of the Fuzzy ARTMAP neural 
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network only the top-down weights in ARTT, and ARTb, as well as the weights 
from F2' to Fab need to be defined. The bottom-up weights in ARTa and ARTb 
play an important role only if a hardware implementation of the Fuzzy ARTMAP 

neural network is attempted. Hence, wk = (W,1,...,Wa k wk(2Ma) 
is the vector 

of top-down weights emanating from node k in F2 , wb 1 = (wtl"'" wt(2Mb)) 
is the vector of top-down weights emanating from node l in F2 , and wk = 

(wkl, ..., wknb) is the vector of weights emanating from node k in F2' and 

converging to the nodes of the MAP-layer Fab . Based on the discussion in Section 
2 we identify by I and 0 the inputs and outputs applied at layers F, and F? I 
of the Fuzzy ARTMAP neural network, respectively. In particular, 

where 

Consider now the case where an input I with corresponding output 0 is 

presented at the Fï layer, and assume that node K in FZ is chosen to represent 
the input I. Furthermore, suppose that w Ki = 1 for all l such that 1:S l < Nb . 
Then, we say that node K has no prediction. On the other hand, if W K L = 1, 
W Kl = 0 for l i= L, and node L in Ff is the compressed representation for 
the output 0, we say that node K confirms I 's prediction. Finally, if W K L = 1, 

W KI = 0 for I # L, and node L in Ff is the compressed representation for 

a different output 6 (i.e., then we say that node K disconfirms I 's 

prediction. 
The network parameters in the Fuzzy ARTMAP neural network are: Mu , 

/3a, /3b, Pa , Pb, p. The network parameters MJ;, /3a and have 
an effect on the nodes chosen in F2 and F2 to represent the input I and the 

output 0, respectively. Specifically, when an input I is applied at the F? layer 
of the ARTd module it produces an input T%(I) at node k in the F2 layer. 
This input is given by the following equation: 

where a node k in F2' is called uncommitted it its top-down weights have not been 
modified yet. In the above equation, an operator is used designated by the symbol 
A. Assuming that zi and z2 define two vectors of the same dimensionality, the 

symbol zl/\z2 defines a vector whose r -th component, (zl /\z2Jr , is the minimum 
of the r -th component of zl , and the r -th component of z . Furthermore, in 
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the above equation, if z defines a vector of arbitrary dimensionality the symbol 

Izl designates the size of this vector; the size of a vector is defined to be the sum 

of its components. Finally, in the above equation, the Qk'S are chosen according 
to the following rules: 

The ARTa module chooses the node in F2 that maximizes Tkl(I). That is, 
node K in F2' is chosen to represent the input I if TK (I) = maxdTf:(I)}. 
Similar statements are valid regarding the selection of nodes chosen in F2 to 

represent the outputs 0 presented at the ARTb module. In particular, when an 

output 0 is applied at the F6 layer of the ART6 module it produces an input 

Tb(O) at node l in the F2 layer. This input is given by the following equation: 

where a node l in F2 is called uncommitted it its top-down weights have not been 

modified yet. In the above equation the ab's are chosen according to the following 
rules: 

The ART6 module chooses the node in F2' that maximizes Tb(O) . That is, 

node L in F2 is chosen to represent the input 0 if TL(O) 
= 

max¡{Tt(O)}. 
The network parameters pa, pb and p designate the vigilance parameters in 

the ARTa, ARTb and inter-ART modules, respectively. It is worth pointing out 

that the vigilance parameter in the ARTa module is allowed to increase during 

training. In particular, pa starts from a baseline value equal to pud and if an 

incorrect map is established between an input I and an output 0, then pa is 

increased above its baseline value of pd . The vigilance parameters in ARTa and 

ARTb control the coarseness of the compressed representations established at F2 
a 

and F2 . Specifically, small Pa, pb values result in nodes at F2 and F2b that 

represent many inputs, outputs, respectively. The reverse situation is true when 

pa and pb are chosen to be large. Actually, in most problems, the coarseness 

of the representations is controlled only by the pb parameter (this is the case in 

the FSS problem). The value of the vigilance parameter pa plays another role, 
which is described in detail in [9]. The vigilance parameter p makes sure that 
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the desired mappings between inputs and outputs are established, and for the 

purposes of this paper it can be chosen arbitrarily over its domain of definition. 
The parameter Mg may assume values in the interval (2Ma, oo) , while Mu 

may assume values in the interval (2Mb, oo) . The parameters /3a and flb may take 
values in the interval (0, oo). The baseline vigilance parameter pa may assume 
values in the interval [0, ] ; which implies that Pa takes values in the interval 

(pa, 1]. The vigilance parameter pb and the inter-ART vigilance parameter p 
take values in the interval (0, 1]. 

A.2 Detailed Training Phase of Fuzzy ARTMAP 

As we mentioned in the main body of the paper the scenario under which the 

Fuzzy ARTMAP neural network is trained is as follows: We have a collection of 

input output pairs designated as (I I, Ol ), (I2, 02), ... (IP, OP) that we refer to 
as the training list. We want to train the Fuzzy ARTMAP to learn the follow- 

ing mapping: Il to O1 , I2 to 02, and eventually IP to OP . To do so, we 

present the input list repeatedly to the Fuzzy ARTMAP architecture, until the 
architecture learns all the desired mappings. 

For the FSS design problem an input I corresponds to the normalized and then comple- 
ment coded version of the vector, whose components are the FSS parameter values 0, b, 
d. The output 0 corresponds to the normalized and then complement coded 17-D vector, 
whose components are 17 valnes of a desired frequency response obtained by sampling a 

freqv.ency response at 17 equally distributed points over its domain of definition. Hence, 
Ma = 3, Mb = 17, and we choose Na = 100 and Nb = 100. 

The detailed steps of the training phase of Fuzzy ARTMAP are listed below. 
In the description of the detailed steps there is a prevalent operator, designated 
by the symbol A. This operator was discussed in the Preliminaries subsection of 
the Appendix. Another operator that shows up in the description of the training 
phase of Fuzzy ARTMAP is the operator, designated by the symbol n. Assuming 
now that zl and z2 define two binary vectors (i.e., vectors with component values 
either 0 or 1) of the same dimensionality, the symbol zl nz2 defines a binary vector, 
whose r-th component (zl A z2), is the bitwise AND operation applied on the 
r -th component of z' and on the r -th component of z2. Finally, the notations 

w(old) and w(new) are used to designate values of the weight w prior to and 
after the presentation of an input output pair from the training list, respectively. 

1. Choose a value for the vigilance parameters pa , pb , p, and the learning pa- 
rameters /3a and /3b' For the FSS design problem we chose pa = 0, p = 1, pb 
any value in the interval [0.8 0.955 , = 1, and = 1. Initially, pa = pa = 0. 
The weights are initialized as follows: 

2. Choose a pattern IP from the input list and apply it to the Fï layer of the 

ARTa architecture. The input T;:(IP) from the Fl' layer to the k th F2 node 

obeys the equation: 
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where the ak's in the above equation are chosen according to the rules specified 
in equations (A.6) and (A. 7). For the FSS design problem. Mu = 2Ma = 6. 

3. The initial choice at F2 is a node with index K satisfying 

If more than one node is maximal, choose the node with the lowest index. 

4. Check of the vigilance criterion: If node K satisfies the condition 

then node K is chosen to represent the input pattern IP and we move to step 
5. If node K violates the above condition then node K is disqualified, and we 

move back to step 3 to search for another node in the F2 layer to represent 

IP ; node K is disqualified from the search by setting TK = -1 for as long as 

the input pattern h persists at the network input. 
5. If the desired output 0P has already been presented to the F6 layer of ARTb 

and a node L in F2 has been chosen to represent this output we move to step 
9 to check the match tracking criterion. 

If the desired output 0P has not been presented to the ARTb architecture we 

proceed as follows: Present the desired output OP , corresponding to the input 

IP, to the Fi layer of the ARTb architecture. Calculate the bottom-up inputs 
from the Fi layer to the l-th FZ node according to the equation: 

where the a/ 's in the above equation are chosen according to the rules specified 

in equations (A.9) and (A. 10). For the FSS design problems Mf = 2Mb = 34. 

Now proceed with step 6. 
b 6. If node K in the F2 layer, chosen in the step 4, predicts a node L in the F2 

layer then this node will be activated first in the F2 layer and we move to step 
8 to check for its appropriateness to represent the desired output 0P . If node 
K in the F2 layer, chosen in the step 4, does not have a prediction then we 

continue with step 7. 
7. The initial choice at Fb is a node with index L satisfying 

If more than one node is maximal, choose the node with the lowest index. 
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8. Check of the vigilance criterion: If node L satisfies the condition 

Then node L is chosen to represent the input 0P and we continue with step 
9. If node L violates the above condition then node L is disqualified, and we 
move back to step 7 to search for another node in the F2' layer to represent 

0P ; node L is disqualified from the search by setting TL = -1 for as long as 
the input h and the desired output 0P persist at the network inputs. 

9. At this point node K in F2 has been chosen to represent the input IP and 

node L in F2b has been chosen to represent the desired output 0P . The Fa6 

output vector x is equal to yb n wK , where yb is the output activity vector 
across the F2b layer and wK is the vector of weights emanating from the F2 
layer node K and converging to the nodes of the MAP-layer Fab . If a node 
in F2b is chosen then its output activity is 1, and if it is not chosen its output 
activity is 0. Consequently, the vectors x, yb and wK are binary vectors. We 
now check to see whether the match tracking criterion is satisfied. If 

then we have achieved the desired mapping and we continue to step 10 to learn 
the input, output pair presented. If 

then the mapping between K and L is not the desired one. In this case the 

vigilance parameter pa is increased slightly above the value lIP /\ wK(old) I/IIPI ; 
this leads to immediate disqualification of node K in ARTa , and we move to 

step 3 with the new vigilance parameter for the selection of another node in 

F2 that will achieve the desired mapping; prior to moving to step 3 we set 

TK = -1 for as long as the input IP and the desired output OP persist at the 
network inputs. 

10. If during h's and 0P 's presentation, the desired mapping has been achieved 
between node K in ARTa and node L in ARTb, the adaptable weights 
emanating from these nodes are modified according to the equations: 

Note that all the other weights remain unchanged. 
11. If you have not exhausted all the input pairs then go to step 2 and present the 

next input pair in line (i.e., present the input of the next input pair to ART 
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and the output of the next input pair to ARTb)' If you have exhausted all 

the pairs from your training list, but at least one adaptable weight changed in 

the architecture during the previous list presentation, then move to step 2 and 

present the first input pair in your list (e.g., pair (Il , Ol) ). Before moving to 

step 2 reset the pa value to Pa , and set the vectors x, yb , and all the bottom- 

up inputs Tk and Tb equal to zero. If you have exhausted all the input pairs 
in the training list and and no adaptable weight was changed during your last 

training list presentation, then training is complete. 

A.3 Detailed Performance Phase of Fuzzy ARTMAP 

In the performance phase of the Fuzzy ARTMAP neural network we have a col- 

lection of test outputs that we present to the ARTb module. In the FSS design 

problem the test outputs corresporcd to desired frequency responses, and our objective is 

to use the already trained Fuzzy ARTMAP neural network to derive the FSS parameter 
values that can generate these responses. 

The steps of the performance phase are described below. 

1. Choose a value for the vigilance parameters pb , smaller than the pb which 

you chose for the training phase by 0.1. All the other Fuzzy ARTMAP 

parameters are chosen as they were chosen in the training phase. 
2. Present the test output 0 at the ARTb module. The bottom-up input 

T6(0) from the Fb layer to the lth F2b node obeys the equation: 

where the ab's in the above equation are chosen according to the rules spec- 
ified in equations (A.9) and (A. 10). 

3. The initial choice at F2 is a node with index L satisfying 

If more than one node is maximal, choose the node with the lowest index. 
4. Check of the vigilance criterion: If node L satisfies the condition 

then node L is chosen to represent the output 0 and we continue with Step 
5. If node L violates the above condition then node L is disqualified, and we 

move back to Step 3 to search for another node in the F' 2 layer to represent 

0 ; node L is disqualified from the search by setting TL = -1 for as long as 

the output 0 persists at the network inputs. 
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5. A node L has been chosen in F2 to represent the output O. 

(a) If node L is not uncommitted, then through the connections from the 

F2' to the Fab layer we identify all the nodes K in F2 that have as a 

prediction node L in F2 , that is, all nodes K for which 

A node K in F2 that satisfies the above equations will, through its top-down 
ART,, connections, identify approximate values for the FSS parameters that 

generate the frequency response 0 presented at ARTb . 

(b) If node L is uncommitted, then no node in F2 will have node L in F2 2 
as its prediction, or equivalently, the Fuzzy ARTMAP neural network 

cannot provide an estimate for the FSS parameter values that would 

generate the frequency response presented at the ARTb module. In 

this case, we can say that the frequency response is too novel for the 

architecture to risk an estimate for the FSS parameter values that would 

generate this response. 
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